0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical Fatigue Simulation of Access Hole Detail in Orthotropic Steel Bridge Deck

 Numerical Fatigue Simulation of Access Hole Detail in Orthotropic Steel Bridge Deck
Auteur(s): , , ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 887-893
DOI: 10.2749/nanjing.2022.0887
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.16 MB

In order to investigate the fatigue crack mechanism of growth and propagation at access hole detail in the orthotropic steel bridge deck, welding numerical model and multi-scale whole bridge numer-...
Lire plus

Détails bibliographiques

Auteur(s): (Department of bridge Engineering, College of Highways, Chang’an University, Xi’an, CHINA)
(Department of bridge Engineering, College of Highways, Chang’an University, Xi’an, CHINA)
(Department of bridge Engineering, College of Highways, Chang’an University, Xi’an, CHINA)
(Department of bridge Engineering, College of Highways, Chang’an University, Xi’an, CHINA)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 887-893 Nombre total de pages (du PDF): 7
Page(s): 887-893
Nombre total de pages (du PDF): 7
DOI: 10.2749/nanjing.2022.0887
Abstrait:

In order to investigate the fatigue crack mechanism of growth and propagation at access hole detail in the orthotropic steel bridge deck, welding numerical model and multi-scale whole bridge numer- ical fatigue model were established. Based on linear elastic fracture mechanics and eXtend finite element model (XFEM), numerical fatigue simulation and mechanism analysis were carried out un- der the multi-filed coupling effect. Welding residual stress analysis results show that the high resid- ual tensile stress exists at welding hole edge, of which the maximum value located at the middle of the edge. The numerical simulation results show that stress intensity factor (SIF) range at access hole detail exceeded the fatigue crack propagation threshold under the multi-filed coupling effect. And fatigue cracks at access hole detail are mode I cracks.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.