0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical Investigation on Fire Performance of LSF and Steel Modular Floor Panels

Auteur(s): ORCID

ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 12
Page(s): 1721
DOI: 10.3390/buildings12101721
Abstrait:

The steel Modular Building Systems (MBSs) that have been influenced by the Light-gauge Steel Frame (LSF) techniques have become a prominent culture in the industry. However, the detrimental behaviour of steel structural components at high temperatures has elevated the risk of fatal accidents in the event of a fire. Although several research investigations have addressed the fire performance of steel modular wall systems, the behaviour of modular floor systems has not been adequately addressed in the state of the art. Hence, to promote the fire safety and optimum design techniques in the modular construction industry by addressing the aforementioned research gap, this study investigated 48 conventional LSF and MBS floors for their structural and insulation Fire Resistance Levels using Finite Element Modelling (FEM) and Heat Transfer Analyses (HTA) techniques. Initially, full-scale experimental fire tests were modelled using FEM methods, and the validity of the techniques was verified prior to the analyses of parametric floor systems. Furthermore, the structural behaviour of the channel section joists in the elevated temperatures was studied, and hence a correlation was established to determine the critical steel temperature at the structural fire failure with respect to the applied Load Ratio (LR). An additional 12.5 mm thick plasterboard sheathing on single plasterboard sheathed floors resulted a 30 min improvement in structural and insulation FRLs. In addition, the modular floor systems demonstrated enhanced structural and insulation Fire Resistance Levels (FRLs) against the corresponding conventional LSF floor designs due to double LSF skin build-up. The incorporation of rockwool insulation and the increase in the insulation volume implied increased structural and fire performances. However, insulation material in the modular designs was more effective. The fire-rated conventional and modular LSF floor systems are expected to be practised in the construction industry to achieve required fire resistances with optimum material usage.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700305
  • Publié(e) le:
    11.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine