Measured earth pressures behind an integral bridge abutment
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1 Abstract

Integral bridges are preferred by bridge authorities and road agencies because they provide a simpler form of
construction, with reduced maintenance costs as a result of the elimination of bridge bearings and joints. This
simpler construction brings with it design challenges as both the structure and the adjacent fill are constantly
moving. Thermal expansion and contraction of the deck causes the abutments to move, leading to changes in
pressure in the earth fill behind the abutment. The soil adjacent to the abutment accommodates the cyclic
deck expansion and contraction caused by changes in bridge deck temperature. This results in an increase in
the stiffness of the fill due to densification. Even if the fill is placed in a loose condition, it will be densified
during the lifetime of the structure. The build-up of pressure depends on the nature of the fill behind the
abutment and on the type of abutment. Stiff clays show a relatively low build-up of lateral stress however
sand stresses can increase beyond at-rest pressure and approach full passive pressures. Much of the research
on this type of soil structure action has been done in the laboratory with limit conclusive field testing.

In this paper earth pressures measured over a 2 year period on a 90m long fully integral bridge are summarized
and discussed in relation to measured changes in effective bridge temperature as well as the abutment
movement, thus testing the hypothesis that when more strain (i.e. a longer bridge and/or increase in the
change in effective bridge temperature) is imparted to the soil, more granular flow occurs, resulting not only
in more rapid stress escalation, but also in higher earth pressures.
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of lateral stress [1], however sand stresses can
increase beyond at-rest pressure and approach full

2 Introduction ,
passive pressures [2]. England [3] showed that

Integral abutment bridges undergo thermal
movements due to daily and seasonal temperature
changes. The movement of the abutment is thought
to lead to a gradual build-up of lateral earth
pressure behind integral bridge abutments. The
increase in pressure depends on the nature of the
fill behind the abutment and on the type of
abutment. Stiff clays show a relatively low build-up

when more strain (i.e. a longer bridge and/or
increase in the change in effective bridge
temperature) is imparted to the soil during a
double-cycle operation, more granular flow occurs.
This results in stress escalation that is more rapid
and higher wall reaction ratios (i.e. high earth
pressures). Stress escalation and time required to
reach a steady state was shown to be dependent on
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